Respuesta :

ANSWER

1. k=13

2. x=-10

EXPLANATION

The given function is

[tex]f(x) = {x}^{2} + 3x - 10[/tex]

To find f(x+5), plug in (x+5) wherever you see x.

This implies that:

[tex]f(x) = {(x + 5)}^{2} + 3(x + 5) - 10[/tex]

Expand:

[tex]f(x) = {x}^{2} + 10x + 25+ 3x + 15- 10[/tex]

Simplify to obtain

[tex]f(x) = {x}^{2} + 13x + 30[/tex]

We now compare with,

[tex]f(x) = {x}^{2} + kx + 30[/tex]

This implies that:

[tex]k = 13[/tex]

To find the smallest zero of f(x+5), we equate the function to zero and solve for x.

[tex]{x}^{2} + 13x + 30 = 0[/tex]

[tex] {x}^{2} + 10x + 3x + 30 = 0[/tex]

[tex]x(x + 10) + 3(x + 10) = 0[/tex]

[tex](x + 3)(x + 10) = 0[/tex]

[tex]x = - 10 \: or \: x = - 3[/tex]

The smallest zero is -10.

Answer:

k=13 while x =-10 :)

Step-by-step explanation: