Respuesta :
Answer:
[tex]\boxed{\bold{\frac{m^2}{\left(m+n\right)\left(m-n\right)}}}[/tex]
Step-by-step explanation:
Factor [tex]\bold{m^2-n^2}[/tex]
[tex]\bold{\left(m+n\right)\left(m-n\right)}[/tex]
Rewrite Equation
[tex]\bold{\frac{m^2}{\left(m+n\right)\left(m-n\right)}}[/tex]
Answer:
[tex]\frac{m^2}{(m+n)(m-n)}[/tex]
Step-by-step explanation:
Here we have to simplify the denominator of the expression given in the question.
We will use the formula for
Difference of the squares which us given as under
[tex]a^2-b^2=(a+b)(a-b)[/tex]
Let us now simplify the denominator
[tex]m^2-n^2=(m+n)(m-n)[/tex]
Hence
Our answer is
[tex]\frac{m^2}{(m+n)(m-n)}[/tex]