Respuesta :
make equal to 0
minus 12from both sides
x^2+10x+13=0
we can't factor so use quadratic formula
x= [tex] \frac{-b+/- \sqrt{b^{2}-4ac} }{2a} [/tex]
x= [tex] \frac{-10+/- \sqrt{10^{2}-4(1)(13)} }{2(1)} [/tex]
x= [tex] \frac{-10+/- \sqrt{100-52} }{2} [/tex]
x= [tex] \frac{-10+/- \sqrt{48} }{2} [/tex]
x= [tex] \frac{-10+/- 4\sqrt{3} }{2} [/tex]
x= [tex] -5+/- 2\sqrt{3} [/tex]
x= [tex] -5+ 2\sqrt{3} [/tex] or [tex] -5- 2\sqrt{3} [/tex]
aprox
x=-1.5359 or -8.4641
minus 12from both sides
x^2+10x+13=0
we can't factor so use quadratic formula
x= [tex] \frac{-b+/- \sqrt{b^{2}-4ac} }{2a} [/tex]
x= [tex] \frac{-10+/- \sqrt{10^{2}-4(1)(13)} }{2(1)} [/tex]
x= [tex] \frac{-10+/- \sqrt{100-52} }{2} [/tex]
x= [tex] \frac{-10+/- \sqrt{48} }{2} [/tex]
x= [tex] \frac{-10+/- 4\sqrt{3} }{2} [/tex]
x= [tex] -5+/- 2\sqrt{3} [/tex]
x= [tex] -5+ 2\sqrt{3} [/tex] or [tex] -5- 2\sqrt{3} [/tex]
aprox
x=-1.5359 or -8.4641
Answer: - 1.536 or - 8.464
Step-by-step explanation:
Step 1: Rearrange the equation, by putting everything on the left hand side of the equation so that the quadratic formula can be applicable to the equation
x^2-10*x+25-(12)=0
Step 2: the quadratic formula
- B ± √ B2-4AC
x = ————————
2A
Where A= 1
B = 10
C = 13
B2 - 4AC = 100 - 52
= 48
10 ± √ 48
x = —————
2
- √ 48
x =(10-√48)/2=5-2√ 3 = - 1.536
x =(10+√48)/2=5+2√ 3 = - 8.464
Are the two solutions