Respuesta :

ANSWER

K=43° to the nearest degree

EXPLANATION

Use the sine rule:

[tex] \frac{ \sin(J) }{j} = \frac{ \sin(L)}{l} [/tex]

Substitute the values

[tex] \frac{ \sin(J) }{10} = \frac{ \sin(102 \degree)}{17} [/tex]

This gives us,

[tex] \sin(J) = \frac{ \sin(102 \degree)}{17} \times 10[/tex]

[tex] J = \sin ^{ - 1} (0.57538094161) = 35.126 \degree[/tex]

J is approximately 35°

We now use the sum of interior angles of a triangle to find K.

[tex]K + 35 \degree + 102 \degree = 180 \degree[/tex]

[tex]K = 180 \degree - 35 \degree - 102 \degree[/tex]

[tex]K = 43 \degree [/tex]