Respuesta :

Answer:

x = [tex]\frac{3}{2}[/tex]

Step-by-step explanation:

Given the graph intersects the y- axis at (0, - 18), then substitute the coordinates into the equation y = x² + bx + c

- 18 = 0 + 0 + c ⇒ c = - 18

In the same way substitute (6, 0) into the equation

0 = 6² + 6b - 18

0 = 36 + 6b - 18

0 = 18 + 6b ( subtract 18 from both sides )

- 18 = 6b ( divide both sides by 6 )

- 3 = b

Hence equation is

y = x² - 3x - 18

Given the equation in standard form : y = ax² + bx + c : a ≠ 0

Then the x- coordinate of the vertex is

[tex]x_{vertex}[/tex] = - [tex]\frac{b}{2a}[/tex]

y = x² - 3x - 18 is in standard form

with a = 1, b = - 3, c = - 18, hence

[tex]x_{vertex}[/tex] = - [tex]\frac{-3}{2}[/tex] = [tex]\frac{3}{2}[/tex]

The x- coordinate of the turning point is [tex]\frac{3}{2}[/tex]