Use Green's Theorem to evaluate the line integral along the given positively oriented curve. C 3y + 5e x dx + 8x + 9 cos(y2) dy C is the boundary of the region enclosed by the parabolas y = x2 and x = y2

Respuesta :

By Green's theorem,

[tex]\displaystyle\int_C(3y+5e^x)\,\mathrm dx+(8x+9\cos(y^2))\,\mathrm dy[/tex]

[tex]\displaystyle=\iint_D\left(\frac{\partial(8x+9\cos(y^2))}{\partial x}-\frac{\partial(3y+5e^x)}{\partial y}\right)\,\mathrm dx\,\mathrm dy=5\iint_D\mathrm dx\,\mathrm dy[/tex]

where [tex]D[/tex] is the region enclosed by [tex]C[/tex]. Equivalently, the line integral is equal to 5 times the area of [tex]D[/tex], which is

[tex]\displaystyle5\iint_D\mathrm dx\,\mathrm dy=5\int_0^1\int_{x^2}^{\sqrt x}\mathrm dy\,\mathrm dx=5\int_0^1(\sqrt x-x^2)\,\mathrm dx=\boxed{\frac53}[/tex]