Respuesta :

For this case we have that by definition, the volume of a cylinder is given by:

[tex]V = \pi * r ^ 2 * h[/tex]

Where:

V: It's the volume

A: It is the radius of the cylinder

h: It is the height of the cylinder

We have to:

[tex]V = \pi * (7.2) ^ 2 * 12\\V = \pi * 51.84 * 12\\V = 1954.32195794513 \ m ^ 3[/tex]

On the other hand, the volume of the cone is given by:

[tex]V = \frac {\pi * r ^ 2 * h} {3}[/tex]

V: It's the volume

A: It is the cone radius

h: It is the height of the cone

We have:

[tex]V = \frac {\pi * (7.2) ^ 2 * 11} {3}\\V = \frac {\pi * 51.84 * 11} {3}\\V = 597.153931594347 \ m ^ 3[/tex]

Thus, the total volume is given by:

[tex]V = 2551.47588954 \ m ^ 3[/tex]

If we round up we have:

[tex]V = 2551.48 \ m ^ 3[/tex]

Answer:

[tex]V = 2551.48 \ m ^ 3[/tex]