Calculate the volume of the composite solid. Round your answer to the nearest hundreth

For this case we have that by definition, the volume of a cylinder is given by:
[tex]V = \pi * r ^ 2 * h[/tex]
Where:
V: It's the volume
A: It is the radius of the cylinder
h: It is the height of the cylinder
We have to:
[tex]V = \pi * (7.2) ^ 2 * 12\\V = \pi * 51.84 * 12\\V = 1954.32195794513 \ m ^ 3[/tex]
On the other hand, the volume of the cone is given by:
[tex]V = \frac {\pi * r ^ 2 * h} {3}[/tex]
V: It's the volume
A: It is the cone radius
h: It is the height of the cone
We have:
[tex]V = \frac {\pi * (7.2) ^ 2 * 11} {3}\\V = \frac {\pi * 51.84 * 11} {3}\\V = 597.153931594347 \ m ^ 3[/tex]
Thus, the total volume is given by:
[tex]V = 2551.47588954 \ m ^ 3[/tex]
If we round up we have:
[tex]V = 2551.48 \ m ^ 3[/tex]
Answer:
[tex]V = 2551.48 \ m ^ 3[/tex]