Respuesta :

You can factor the 32 out of the sum:

[tex]\displaystyle \sum_{m=1}^\infty 32 \cdot \left(\dfrac{1}{2}\right)^{m-1} = 32\sum_{m=1}^\infty \left(\dfrac{1}{2}\right)^{m-1}[/tex]

We can also change the index as follows

[tex]\displaystyle 32\sum_{m=1}^\infty \left(\dfrac{1}{2}\right)^{m-1} = 32\sum_{m=0}^\infty \left(\dfrac{1}{2}\right)^{m}[/tex]

Now, we have a theorem that states that the series

[tex]\displaystyle \sum_{m=1}^\infty a^m[/tex]

converges if and only if [tex]|a|<1[/tex], and in this case we have

[tex]\displaystyle \sum_{m=1}^\infty a^m = \dfrac{1}{1-a}[/tex]

This is your case, because you have

[tex]|a|=\dfrac{1}{2}<1[/tex]

which implies that your series converges, and the value is

[tex]\displaystyle 32\sum_{m=0}^\infty \left(\dfrac{1}{2}\right)^{m} = 32 \cdot \dfrac{1}{1-\frac{1}{2}} = 32\cdot 2 = 64[/tex]