Respuesta :

Answer:

h=4

Step-by-step explanation:

The given function is

[tex]h(x)=x^2-8x+14[/tex]

We add and subtract the square of half the coefficient of x.

[tex]h(x)=x^2-8x+(\frac{-8}{2})^2-(\frac{-8}{2})^2+14[/tex]

[tex]h(x)=x^2-8x+(-4)^2-(-4)^2+14[/tex]

The first three terms forms a perfect square trinomial

[tex]h(x)=(x-4)^2-16+14[/tex]

[tex]h(x)=(x-4)^2-2[/tex]

We now compare to the vertex form;

[tex]h(x)=a(x-h)^2+k[/tex]

We have h=4