Respuesta :

Answer:

[tex]f(x)=-2x+10[/tex]

Step-by-step explanation:

The given line passes through (6-2).

The given is perpendicular to 2y=x-4.

We solve for y in the given equation to get;

[tex]y=\frac{1}{2}x-2[/tex]

The slope of this line is [tex]\frac{1}{2}[/tex]

The slope of the line perpendicular to this line is the negative reciprocal of the [tex]\frac{1}{2}[/tex].

Hence; [tex]m=-\frac{1}{\frac{1}{2} } =-2[/tex]

The equation is given by

[tex]y-y_1=m(x-x_1)[/tex]

We substitute the point [tex](x_1,y_1)=(6,-2)[/tex] to obtain;

[tex]y--2=-2(x-6)[/tex]

Hence the required equation is;

[tex]y+2=-2x+12[/tex]

[tex]y=-2x+12-2[/tex]

[tex]y=-2x+10[/tex]

The function notation is

[tex]f(x)=-2x+10[/tex]