The photon energies used in different types of medical x-ray imaging vary widely, depending upon the application. Single dental x rays use photons with energies of about 25 {\rm keV}. The energies used for x-ray microtomography, a process that allows repeated imaging in single planes at varying depths within the sample, is 2.5 times greater.

What are the wavelengths of the x rays used for these two purposes? answer in m
\lambda_{\rm dental}
\lambda_{\rm microtomography}

Respuesta :

A) [tex]5.0\cdot 10^{-11} m[/tex]

The energy of an x-ray photon used for single dental x-rays is

[tex]E=25 keV = 25,000 eV \cdot (1.6\cdot 10^{-19} J/eV)=4\cdot 10^{-15} J[/tex]

The energy of a photon is related to its wavelength by the equation

[tex]E=\frac{hc}{\lambda}[/tex]

where

[tex]h=6.63\cdot 10^{-34}Js[/tex] is the Planck constant

[tex]c=3\cdot 10^8 m/s[/tex] is the speed of light

[tex]\lambda[/tex] is the wavelength

Re-arranging the equation for the wavelength, we find

[tex]\lambda=\frac{hc}{E}=\frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^8 m/s)}{4\cdot 10^{-15}J}=5.0\cdot 10^{-11} m[/tex]

B) [tex]2.0\cdot 10^{-11} m[/tex]

The energy of an x-ray photon used in microtomography is 2.5 times greater than the energy of the photon used in part A), so its energy is

[tex]E=2.5 \cdot (4\cdot 10^{-15}J)=1\cdot 10^{-14} J[/tex]

And so, by using the same formula we used in part A), we can calculate the corresponding wavelength:

[tex]\lambda=\frac{hc}{E}=\frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^8 m/s)}{1\cdot 10^{-14}J}=2.0\cdot 10^{-11} m[/tex]

Otras preguntas