Respuesta :
Answer:
[tex]V=152\pi in^{2}[/tex] in terms or pi
[tex]V=477.52in^{2}[/tex] simplified
Step-by-step explanation:
To solve this, we are using the Cylinder's volume formula:
[tex]V=\pi r^{2} h[/tex]
where
[tex]V[/tex] is the volume of the cylinder
[tex]r[/tex] is the radius of the cylinder
Remember that radius is half the diameter, so we can divide the diameter of our cylinder by 2 to find its radius: [tex]r=\frac{d}{2} =\frac{8in}{2} =4in[/tex]. Now, 9 1/2 inches is 9 and a half inches, so [tex]h=9.5in[/tex].
Replacing values:
[tex]V=\pi (4in)^{2} (9.5in)[/tex]
[tex]V=\pi (16in^{2})(9.5in)[/tex]
[tex]V=152\pi in^{2}[/tex]
[tex]V=477.52in^{2}[/tex]
We can conclude that the volume of our cylinder is [tex]V=152\pi in^{2}[/tex] in terms of pi, or [tex]V=477.52in^{2}[/tex] simplified.
Answer:
[tex]V=477.5in^3[/tex]
Step-by-step explanation:
The volume of a cylinder can be calculated using the formula;
[tex]V=\pi r^2h[/tex]
where the radius is half of the diameter of the circle.
[tex]r=\frac{8}{2} =4in.[/tex]
The height of the cylinder is
[tex]h=9\frac{1}{2}=\frac{19}{2}in.[/tex]
We substitute the values into the formula to obtain;
[tex]V=\pi\times 4^2\times \frac{19}{2}[/tex]
[tex]V=477.5in^3[/tex]
correct to the nearest tenth