Respuesta :

For this case, we find the equation of the line of the form:

[tex]y = mx + b[/tex]

Where:

[tex]m = \frac {y2-y1} {x2-x1} = \frac {-3-0} {0 - (- 3)} = \frac {-3} {3} = - 1[/tex]

So, we have:

[tex]y = -x + b[/tex]

We substitute one of the points:[tex]0 = - (- 3) + b\\0 = 3 + b\\b = -3[/tex]

Thus, the equation is:

[tex]y = -x-3[/tex]

Now, we substitute a point belonging to the region to determine the sign.

([tex](0,0)\\0? - (0) -3\\0? -3[/tex]

-3 is less than 0.

Then, the inequality is:

[tex]y> -x-3[/tex]

As the border of the region is dotted, then it remains ">."

Answer:

[tex]y> -x-3[/tex]