Respuesta :
Answer:
Part 1) [tex]12\pi\ in^{3}[/tex]
Part 2) [tex]18\pi\ in^{3}[/tex]
Part 3) [tex]30\pi\ in^{3}[/tex]
Part 4) [tex]42\pi\ in^{3}[/tex]
Step-by-step explanation:
Part 1) Find the volume of the cone
The volume of the cone is equal to
[tex]V=\frac{1}{3}\pi r^{2}h[/tex]
we have
[tex]r=6/2=3\ in[/tex] ----> the radius is half the diameter
[tex]h=4\ in[/tex]
substitute
[tex]V=\frac{1}{3}\pi (3)^{2}(4)=12\pi\ in^{3}[/tex]
Part 2) Find the volume of a hemisphere (top of the snow cone)
The volume of a hemisphere is
[tex]V=\frac{4}{6}\pi r^{3}[/tex]
we have
[tex]r=6/2=3\ in[/tex] ----> the radius is half the diameter of the base's cone
substitute
[tex]V=\frac{4}{6}\pi (3)^{3}=18\pi\ in^{3}[/tex]
Part 3) How many cubic inches of snow cone will you be serving?
Adds the volume of the cone and the volume of the top
[tex]12\pi\ in^{3}+18\pi\ in^{3}=30\pi\ in^{3}[/tex]
Part 4) Find the volume of the new cone
The volume of the cone is equal to
[tex]V=\frac{1}{3}\pi r^{2}h[/tex]
we have
[tex]r=3\ in[/tex]
[tex]h=8\ in[/tex]
substitute
[tex]V=\frac{1}{3}\pi (3)^{2}(8)=24\pi\ in^{3}[/tex]
The volume of the top is the same, because the diameter of the cone is the same
[tex]V=18\pi\ in^{3}[/tex]
Adds the volume of the new cone and the volume of the top
[tex]24\pi\ in^{3}+18\pi\ in^{3}=42\pi\ in^{3}[/tex]