Respuesta :

frika

Answer:

C

Step-by-step explanation:

Use such properties of logarithms:

[tex]\log_w\dfrac{a}{b}=\log_wa-\log_wb,\\ \\\log_wa^b=b\log_wa[/tex]

Thus,

[tex]\log_w\dfrac{(x^2-6)^4}{\sqrt[3]{x^2+8} }=\text{use the first property}=\\ \\=\log_w(x^2-6)^4-\log_w\sqrt[3]{x^2+8}=\\ \\=\log_w(x^2-6)^4-\log_w(x^2+8)^{\frac{1}{3}}=\text{use the second property}=\\ \\=4\log(x^2-6)-\dfrac{1}{3}\log_w(x^2+8).[/tex]

Answer:

The answer is C

Step-by-step explanation:

Use such properties of logarithms:

\log_w\dfrac{a}{b}=\log_wa-\log_wb,\\ \\\log_wa^b=b\log_wa

Thus,

\log_w\dfrac{(x^2-6)^4}{\sqrt[3]{x^2+8} }=\text{use the first property}=\\ \\=\log_w(x^2-6)^4-\log_w\sqrt[3]{x^2+8}=\\ \\=\log_w(x^2-6)^4-\log_w(x^2+8)^{\frac{1}{3}}=\text{use the second property}=\\ \\=4\log(x^2-6)-\dfrac{1}{3}\log_w(x^2+8).