Respuesta :

Answer:

It is the third option

Step-by-step explanation:

ln(xy)=ln(x)+ln(y)

ln(x/y)=ln(x)−ln(y)

ln(xy)=yln(x)

use these three rules, first separate the fraction out to log([tex]\log (x^2-6)^4 - \log \sqrt[3]{x^2+8}[/tex] , then take the exponent and root out to make [tex]4\log (x^2-6)- \frac{1}{3} \log x^2+8[/tex]

Answer:

C

Step-by-step explanation:

[tex]log_{w} \frac{(x^2-6)^4}{\sqrt[3]{x^2+8} } = log_{w}(x^2-6)^4-log_{w}(x^2+8)^\frac{1}{3}=\\ \\=4log_{w}(x^2-6)-\frac{1}{3}log_{w}(x^2+8)[/tex]