Find the diagonal of the rectangular solid with the given measures. l = 18, w = 10, h = 2

[tex]\boxed{d=2\sqrt{107}}[/tex]
For a rectangular prism whose side lengths are [tex]a,\:b\:and\:c[/tex] the internal diagonal can be calculated as:
[tex]d=\sqrt{a^{2}+b^{2}+c^{2}}[/tex]
So here, we know that:
[tex]a=l=18 \\ \\ b=w=10 \\ \\ c=h=2[/tex]
So:
[tex]d=\sqrt{l^{2}+w^{2}+h^{2}} \\ \\ d=\sqrt{18^{2}+10^{2}+2^{2}} \\ \\ d=\sqrt{324+100+4} \\ \\ d=\sqrt{428} \\ \\ \boxed{d=2\sqrt{107}}[/tex]
Answer : The value of diagonal of the rectangular solid is, 20.69 unit.
Step-by-step explanation :
First we have to calculate the side AC.
Using Pythagoras theorem in ΔABC :
[tex](Hypotenuse)^2=(Perpendicular)^2+(Base)^2[/tex]
[tex](AC)^2=(AB)^2+(BC)^2[/tex]
Given:
Side AB = l = 18
Side BC = w = 10
Now put all the values in the above expression, we get the value of side AC.
[tex](AC)^2=(18)^2+(10)^2[/tex]
[tex]AC=\sqrt{(18)^2+(10)^2}[/tex]
[tex]AC=\sqrt{324+100}[/tex]
[tex]AC=\sqrt{424}[/tex]
Now we have to calculate the side AD (diagonal).
Using Pythagoras theorem in ΔACD :
[tex](Hypotenuse)^2=(Perpendicular)^2+(Base)^2[/tex]
[tex](AD)^2=(AC)^2+(CD)^2[/tex]
Given:
Side AC = [tex]\sqrt{424}[/tex]
Side CD = h = 2
Now put all the values in the above expression, we get the value of side AD.
[tex](AD)^2=(\sqrt{424})^2+(2)^2[/tex]
[tex]AD=\sqrt{(\sqrt{424})^2+(2)^2}[/tex]
[tex]AD=\sqrt{424+4}[/tex]
[tex]AD=\sqrt{428}[/tex]
[tex]AD=20.69[/tex]
Thus, the value of diagonal of the rectangular solid is, 20.69 unit.