Given f(x)=5x^2-2x and 3x^2+x-4. What is (f+g)(x)?

Answer:(f + g)(x) = f (x) + g(x)
= [3x + 2] + [4 – 5x]
= 3x + 2 + 4 – 5x
= 3x – 5x + 2 + 4
= –2x + 6
(f – g)(x) = f (x) – g(x)
= [3x + 2] – [4 – 5x]
= 3x + 2 – 4 + 5x
= 3x + 5x + 2 – 4
= 8x – 2
(f × g)(x) = [f (x)][g(x)]
= (3x + 2)(4 – 5x)
= 12x + 8 – 15x2 – 10x
= –15x2 + 2x + 8
\left(\small{\dfrac{f}{g}}\right)(x) = \small{\dfrac{f(x)}{g(x)}}(
g
f
)(x)=
g(x)
f(x)
= \small{\dfrac{3x+2}{4-5x}}=
4−5x
3x+2
Step-by-step explanation:
To find the answers, all I have to do is apply the operations (plus, minus, times, and divide) that they tell me to, in the order that they tell me to.
Answer:
The correct option is: [tex]8x^2-x-4[/tex]
Step-by-step explanation:
[tex]f(x)= 5x^2-2x\\ \\ g(x)= 3x^2+x-4[/tex]
So, [tex](f+g)(x)[/tex]
[tex]= f(x)+g(x)\\ \\ =(5x^2-2x)+(3x^2+x-4)\\ \\ =(5x^2+3x^2)+(-2x+x)-4\\ \\ =8x^2-x-4[/tex]