Which choice is equivalent to the quotient below shown here when x>0?

Answer:
Choice B is correct
Step-by-step explanation:
The given radical division can be expressed in the following form;
[tex]\frac{\sqrt{16x^{3} } }{\sqrt{8x} }[/tex]
Using the properties of radical division, the expression can be expressed in the following form;
[tex]\sqrt{\frac{16x^{3} }{8x} }=\sqrt{2x^{2} }[/tex]
Simplifying further yields;
[tex]\sqrt{2x^{2} }=\sqrt{2}*\sqrt{x^{2} }=x\sqrt{2}[/tex]
Choice B is thus the correct alternative
For this case we must simplify the following expression:
[tex]\frac {\sqrt {16x ^ 3}} {\sqrt {8x}} =[/tex]
Join the terms in a single radical:
\[tex]\sqrt {\frac {16x ^ 3} {8x}} =\\\sqrt {\frac {8 * (2x ^ 3)} {8x}} =\\\sqrt {\frac {2x ^ 3} {8x}} =\\\sqrt {2x ^ 2} =\\\sqrt [n] {a ^ m} = a ^ {\frac {m} {n}}[/tex]
So:
[tex]\sqrt {2x ^ 2} =\\x \sqrt {2}[/tex]
Answer:
Option B