ASAP PLEASE ANSWER quadrilateral ABCD is dilated at center (0,0) with scale factor 1/2 to form quadrilateral A'B'C'D'. wha is the length of A'B'?

a. sqrt5

b.2

c.10

d.2sqrt5

ASAP PLEASE ANSWER quadrilateral ABCD is dilated at center 00 with scale factor 12 to form quadrilateral ABCD wha is the length of ABa sqrt5b2c10d2sqrt5 class=

Respuesta :

Answer:

[tex]|A'B'|=\sqrt{5}[/tex]

Step-by-step explanation:

The points A and B have coordinates at (0,4) and (4,2) respectively.

The distance formula can be used to find the length of AB.

[tex]|AB|=\sqrt{(4-0)^2+(2-4)^2}[/tex]

[tex]|AB|=\sqrt{(4)^2+(-2)^2}[/tex]

[tex]|AB|=\sqrt{16+4}[/tex]

[tex]|AB|=\sqrt{20}[/tex]

[tex]|AB|=2\sqrt{5}[/tex]

Since quadrilateral ABCD was enlarged with  a scale factor of [tex]\frac{1}{2}[/tex].

The length of A'B' is

[tex]\frac{1}{2}|AB|[/tex]

[tex]=\frac{1}{2}\times2\sqrt{5}[/tex]

[tex]\therefore |A'B'|=\sqrt{5}[/tex]

The quadrilateral ABCD is dilated at the center (0,0) with a scale factor of 1/2. So, after the dilation the length of A'B' is [tex]\sqrt{5}[/tex] and this can be determined by using the formula of length between two points.

Given :

  • Quadrilateral ABCD is dilated at the center (0,0) with a scale factor of 1/2 to form quadrilateral A'B'C'D'.
  • Points - A(0,4), B(4,2), C(4,-4), and D(-2,-2).

Given that the quadrilateral ABCD is dilated at the center (0,0) with a scale factor of 1/2. So the points of the quadrilateral ABCD becomes:

[tex]\rm A(0,4) \to A'(0\times \dfrac{1}{2},4\times \dfrac{1}{2}) = A'(0,2)[/tex]

[tex]\rm B(4,2) \to B'(4\times \dfrac{1}{2},2\times \dfrac{1}{2}) = B'(2,1)[/tex]

[tex]\rm C(4,-4) \to C'(4\times \dfrac{1}{2},-4\times \dfrac{1}{2}) = C'(2,-2)[/tex]

[tex]\rm D(-2,-2) \to D'(-2\times \dfrac{1}{2},-2\times \dfrac{1}{2}) = D'(-1,-1)[/tex]

Now, the length of A'B' is given by:

[tex]\rm AB=\sqrt{(4-0)^2+(2-4)^2}[/tex]

[tex]\rm AB=\sqrt{4^2+(-2)^2}[/tex]

[tex]\rm AB=\sqrt{20}[/tex]

[tex]\rm AB = 2\sqrt{5}[/tex]

[tex]\rm A'B' = \dfrac{1}{2}AB[/tex]

[tex]\rm A'B' = \sqrt{5}[/tex]

Therefore, the correct option is a).

For more information, refer to the link given below:

https://brainly.com/question/13911928