The area of a rectangle, A = 1 x w is represented by the expression 24x^6y^15 Which could be the dimensions of the
rectangle?

Answer:
A. 2x^5y^8 and 12xy^7
Step-by-step explanation:
The question is on laws of indices
when we have x^a × x^b = x^(a+b)
Given in the question 24x^6y^15
24 could be 2×12............for the length and width
Then x^6 = x^1 × x^5 = x^(1+5) = x^6
And y^15 = y^8 ×y^7 = y^(8+7) = y^(15)
Answer:
The correct answer is :[tex]l=2x^5y^8,w = 12xy^7[/tex]
Step-by-step explanation:
Let the dimension of the rectangle be l and w.
A = [tex]24x^6y^{15}[/tex]
[tex]24x^6y^{15}=l\times w[/tex]
A) If the dimension are :
[tex]l=2x^5y^8,w = 12xy^7[/tex]
Area of the rectangle
[tex]= 2x^5y^8\times 12xy^7=24x^6y^{15}=A[/tex]
B) If the dimension are :
[tex]l=6x^2y^3,w = 4x^3y^5[/tex]
Area of the rectangle
[tex]= 6x^2y^3\times 4x^3y^5=24x^5y^{8}\neq A[/tex]
C) If the dimension are :
[tex]l=10x^6y^{15},w = 14x^6y^{15}[/tex]
Area of the rectangle
[tex]= 10x^6y^{15}\times 14x^6y^{15}=140x^{12}y^{30}\neq A[/tex]
D) If the dimension are :
[tex]l=9x^4y^{11},w = 12x^2y^4[/tex]
Area of the rectangle
[tex]= 9x^4y^{11}\times 12x^2y^4=108x^6y^{15}\neq A[/tex]