Determine whether f(x) = -5x2 - 10x + 6 has a maximum or a minimum
value. Find that value and explain how you know.

Determine whether fx 5x2 10x 6 has a maximum or a minimum value Find that value and explain how you know class=

Respuesta :

Answer:

The function has a maximum

The maximum value of the function is

[tex]f (-1) = 11[/tex]

Step-by-step explanation:

For a quadratic function of the form:

[tex]ax ^ 2 + bx + c[/tex] where a, b and c are the coefficients of the function, then:

If [tex]a <0[/tex] the function has a maximum

If [tex]a> 0[/tex] the function has a minimum value

The minimum or maximum value will always be at the point:

[tex]x=-\frac{b}{2a}\\\y=f(-\frac{b}{2a})[/tex]

In this case the function is: [tex]f(x) = -5x^2 - 10x + 6[/tex]

Note that

[tex]a = -5,\ a <0[/tex]

The function has a maximum

The maximum is at the point:

[tex]x=-\frac{-10}{2(-5)}[/tex]

[tex]x=-1[/tex]

[tex]y=f(-1)[/tex]

[tex]y= -5(-1)^2 - 10(-1) + 6[/tex]

[tex]y= 11[/tex]

The maximum value of the function is

[tex]f (-1) = 11[/tex]

Answer:

maximum; -1

Step-by-step explanation:

Just took a test