If. F(x) =-3x2-2 and g(x)=4x+2 what is value of (f+g)(2)

Answer:
[tex](f + g) (2) = -4[/tex]
Step-by-step explanation:
We have the functions
[tex]F(x) =-3x^2-2[/tex]
And
[tex]g(x)=4x+2[/tex]
We want to find [tex](f + g) (x)[/tex]
Then
[tex](f+g)(x) = f(x) + g(x)\\\\(f+g)(x) = -3x^2-2 + 4x+2\\\\(f+g)(x)= -3x^2 +4x[/tex]
finally we find [tex](f + g) (2)[/tex]
[tex](f + g) (2) = -3(2)^2 + 4(2)\\\\(f + g) (2) = -3*4 + 8\\\\(f + g) (2) = -12+ 8\\\\(f + g) (2) = -4[/tex]
Answer:
(f+g)2 = 20
Step-by-step explanation:
18. if F(x) =-3x2-2 and g(x)=4x+2 what is value of (f+g)(2)?
We know, (f+g)2= f(2) + g(2)
We will put 2 in the place of x for f(x) and g(x) and then find their result.
Solving:
(f+g)2= f(2) + g(2)
=3(2)^2 -2 + 4(2) +2
= 3(4) -2 + 8 +2
= 12 -2 +8 +2
= 20
So, (f+g)2 = 20