Respuesta :

Answer:

[tex]f^{-1}(x) = log_2(x-6)[/tex]

Step-by-step explanation:

To find the inverse [tex]f^{-1}(x)[/tex] of a function follow the following steps.

1) Do y = f (x)

[tex]f(x) =y= 2 ^ x + 6[/tex]

[tex]y= 2 ^ x + 6[/tex]

2) Solve the equation for the variable x.

[tex]y= 2 ^ x + 6\\\\y-6 = 2^x\\\\log_2(y-6) = x\\\\x=log_2(y-6)[/tex]

3) exchange the variable y with the variable x

[tex]x=log_2(y-6)\\\\y=log_2(x-6)[/tex]

Finally the inverse is:

[tex]f^{-1}(x) = log_2(x-6)[/tex]