Nicole opened a savings account with an initial deposit of $5,000. Since then, she has never made any other deposits or withdrawals. Her savings account earns 4% interest compounded monthly.

Which equation gives the approximate amount, A(x), she has in her savings account as a function of x, the number of years since her initial deposit?

Respuesta :

Answer:

[tex]A(x)=\$5,000(1.04)^{x}[/tex]  

Step-by-step explanation:

we know that    

The compound interest formula is equal to  

[tex]A=P(1+\frac{r}{n})^{nx}[/tex]  

where  

A is the Final Investment Value  

P is the Principal amount of money to be invested  

r is the rate of interest  in decimal

x is Number of Time Periods  

n is the number of times interest is compounded per year

in this problem we have  

[tex]P=\$5,000\\ r=0.04\\n=12[/tex]  

substitute in the formula above  

[tex]A(x)=\$5,000(1+\frac{0.04}{12})^{12x}[/tex]  

[tex]A(x)=\$5,000(\frac{12.04}{12})^{12x}[/tex]  

[tex]A(x)=\$5,000(1.04)^{x}[/tex]