Respuesta :

gmany

Answer:

[tex]\large\boxed{\sin2\theta=\dfrac{\sqrt3}{2},\ \cos2\theta=\dfrac{1}{2}}[/tex]

Step-by-step explanation:

We know:

[tex]\sin2\theta=2\sin\theta\cos\theta\\\\\cos2\theta=\cos^2\theta-\sin^2\thet[/tex]

We have

[tex]\sin\theta=\dfrac{1}{2}[/tex]

Use [tex]\sin^2\theta+\cos^2\theta=1[/tex]

[tex]\left(\dfrac{1}{2}\right)^2+\cos^2\theta=1\\\\\dfrac{1}{4}+\cos^2\theta=1\qquad\text{subtract}\ \dfrac{1}{4}\ \text{from both sides}\\\\\cos^2\theta=\dfrac{4}{4}-\dfrac{1}{4}\\\\\cos^2\theta=\dfrac{3}{4}\to\cos\theta=\pm\sqrt{\dfrac{3}{4}}\to\cos\theta=\pm\dfrac{\sqrt3}{\sqrt4}\to\cos\theta=\pm\dfrac{\sqrt3}{2}\\\\\theta\in[0^o,\ 90^o],\ \text{therefore all functions have positive values or equal 0.}\\\\\cos\theta=\dfrac{\sqrt3}{2}[/tex]

[tex]\sin2\theta=2\left(\dfrac{1}{2}\right)\left(\dfrac{\sqrt3}{2}\right)=\dfrac{\sqrt3}{2}\\\\\cos2\theta=\left(\dfrac{\sqrt3}{2}\right)^2-\left(\dfrac{1}{2}\right)^2=\dfrac{3}{4}-\dfrac{1}{4}=\dfrac{3-1}{4}=\dfrac{2}{4}=\dfrac{1}{2}[/tex]