Respuesta :

gmany

Answer:

[tex]\large\boxed{y-3=3(x+2)}\qquad\text{point-slope form}\\\boxed{y=3x+9}\qquad\text{slope-intercept form}\\\boxed{3x-y=-9}\qquad\text{standard form}\\\boxed{3x-y+9=0}\qquad\text{general form}[/tex]

Step-by-step explanation:

The point-slope form of an equation of a line:

[tex]y-y_1=m(x-x_1)[/tex]

We have the slope m = 3 and the point (-2, 3). Substitute:

[tex]y-3=3(x-(-2))\\\\y-3=3(x+2)[/tex]

the point-slope form

[tex]y-3=3(x+2)[/tex]        use the distributive property

[tex]y-3=3x+6[/tex]           add 3 to both sides

[tex]y=3x+9[/tex]

the slope-intercept form

[tex]y=3x+9[/tex]           subtract 3x from both sides

[tex]-3x+y=9[/tex]         change the signs

[tex]3x-y=-9[/tex]

the standard form

[tex]3x-y=-9[/tex]              add 9 to both sides

[tex]3x-y+9=0[/tex]

the general form