Someone, please help. Will Mark brainlist if the answer is correct.
Screenshot it below.

[tex]\bf \textit{equation of a circle}\\\\ (x- h)^2+(y- k)^2= r^2 \qquad center~~(\stackrel{}{ h},\stackrel{}{ k})\qquad \qquad radius=\stackrel{}{ r} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ (x-9)^2+y^2=4\implies (x-\stackrel{h}{9})^2+(y-\stackrel{k}{0})^2=2^2~\hfill \stackrel{center}{(9,0)} \\\\\\ (x-\stackrel{h}{3})^2+(y-\stackrel{k}{2})^2=4\implies (x-\stackrel{h}{3})^2+(y-\stackrel{k}{2})^2=2^2~\hfill \stackrel{center}{(3,2)}[/tex]
Check the picture below.
well, its radius didn't change, anyhow, you know what to check out.
Answer:
The circle moves left and up
Step-by-step explanation:
The circle's center changes from (9, 0) to (3,2) and the radius stayed the same.