If f(x)=3x2-2 and g(x)=4x+2 what is value of (f+g)(2)

Answer: -4
[tex](f + g) (2) = -4[/tex]
Step-by-step explanation:
We have the functions
[tex]F(x) =-3x^2-2[/tex] And [tex]g(x)=4x+2[/tex]
We want to find
[tex](f + g) (x)[/tex]
Then
[tex](f+g)(x) = f(x) + g(x)\\\\(f+g)(x) = -3x^2-2 + 4x+2\\\\(f+g)(x)= -3x^2 +4x[/tex]
finally we find
[tex](f + g) (2)[/tex]
[tex](f + g) (2) = -3(2)^2 + 4(2)\\\\(f + g) (2) = -3*4 + 8\\\\(f + g) (2) = -12+ 8\\\\(f + g) (2) = -4[/tex]
Answer: The required value is 20.
Step-by-step explanation: We are given the following two functions :
[tex]f(x)=3x^2-2,~~~~~~~g(x)=4x+2.[/tex]
We are to find the value of (f + g)(2).
We know that, for any two functions p(x) and q(x), we have
[tex](p+q)(x)=p(x)+q(x).[/tex]
So, we have
[tex](f+g)(x)\\\\=f(x)+g(x)\\\\=3x^2-2+4x+2\\\\=3x^2+4x.[/tex]
Therefore, at x = 2, we get
[tex](f+g)(2)=3\times2^2+4\times2=12+8=20.[/tex]
Thus, the required value is 20.