Match the one-to-one functions with their inverse functions.

I'll match them for you, but to find the inverse of an equation, all you must do is
[tex]f(x)^{-1} = 5x[/tex] → [tex]f(x) = \frac{x}{5}[/tex]
[tex]f(x)^{-1} = \frac{x^{3}}{2}[/tex] → [tex]f(x) = \sqrt[3]{2x}[/tex]
[tex]f(x)^{-1} = x + 10[/tex] → [tex]f(x) = x - 10[/tex]
[tex]f(x)^{-1} = \frac{3(x+17)}{2}[/tex] → [tex]f(x) = \frac{2x}{3} -17[/tex]
Hope I help ! :)
ANSWER
[tex] \boxed {f(x)= \frac{2x}{3} - 17\to \: f ^{ - 1} (x)=\frac{3x + 51}{2}}[/tex]
[tex] \boxed {f(x) = x - 10 \to {f}^{ - 1} (x) = x + 10 }[/tex]
[tex] \boxed {f(x) = \sqrt[3]{2x} \to {f}^{ - 1} (x) = \frac{ {x}^{3} }{2} }[/tex]
[tex] \boxed {f(x) = \frac{x}{5} \to{f}^{ - 1} (x) = 5x}[/tex]
EXPLANATION
1.
Given :
[tex]f(x) = \frac{2x}{3} - 17[/tex]
Let
[tex]y =\frac{2x}{3} - 17[/tex]
Interchange x and y.
[tex]x=\frac{2y}{3} - 17[/tex]
Solve for y.
[tex]x + 17=\frac{2y}{3} [/tex]
[tex]3x + 51=2y[/tex]
[tex]y=\frac{3x + 51}{2} [/tex]
[tex]f ^{ - 1} (x)=\frac{3x + 51}{2} [/tex]
2.
Given: f(x)=x-10
Let y=x-10
Interchange x and y.
x=y-10
Solve for y.
y=x+10
This implies that,
[tex] {f}^{ - 1} (x) = x + 10[/tex]
3.
Given:
[tex]f(x) = \sqrt[3]{2x} [/tex]
Let
[tex]y=\sqrt[3]{2x} [/tex]
Interchange x and y.
[tex]x=\sqrt[3]{2y} [/tex]
solve for y.
[tex] {x}^{3} = 2y[/tex]
[tex]y = \frac{ {x}^{3} }{2} [/tex]
[tex] {f}^{ - 1} (x) = \frac{ {x}^{3} }{2} [/tex]
4.
Given:
[tex]f(x) = \frac{x}{5} [/tex]
Let
[tex]y = \frac{x}{5} [/tex]
Interchange x and y.
[tex]x = \frac{y}{5} [/tex]
Solve for y.
[tex]y = 5x[/tex]
[tex] {f}^{ - 1} (x) = 5x[/tex]