Respuesta :

For this case we must solve the following questions:

Question 1:

We should simplify the following expression:

[tex]\frac {\frac {m ^ 2 * n ^ 3} {p ^ 3}} {\frac {mp} {n ^ 2}} =[/tex]

Applying double C we have:

[tex]\frac {m ^ 2 * n ^ 3 * n ^ 2} {mp * p ^ 3} =[/tex]

By definition of multiplication of powers of the same base we have to place the same base and add the exponents:[tex]\frac {m ^ 2 * n ^ 5} {m * p ^ 4} =[/tex]

Canceling common terms:

[tex]\frac {mn ^ 5} {p ^ 4}[/tex]

Answer:

Option A

Question 2:

We should simplify the following expression:

[tex]\frac {3xyz ^ 2} {6y ^ 4} * \frac {2y} {xz ^ 4}[/tex]

So, we have:

[tex]\frac {3xyz ^ 2 * 2y} {6y ^ 4 * xz ^ 4} =\\\frac {6xy ^ 2z ^ 2} {6y ^ 4xz ^ 4} =[/tex]

Simplifying common terms:

[tex]\frac {1} {y ^ 2z ^ 2}[/tex]

Answer:

Option D

Question 3:

We factor the following expressions to rewrite the experience:

[tex]r ^ 2 + 7r + 10[/tex]: We look for two numbers that multiplied give 10 and added 7:

[tex](r + 5) (r + 2)[/tex]

[tex]r ^ 2-5r-50:[/tex] We look for two numbers that multiplied give -50 and added -5:

[tex](r-10) (r + 5)[/tex]

[tex]3r-30 = 3 (r-10)[/tex]

Rewriting the given expression we have:

[tex]\frac {(r + 5) (r + 2) * 3 (r-10)} {3 (r-10) (r + 5)} =[/tex]

We simplify common terms in the numerator and denominator we have:

[tex](r + 2)[/tex]

Answer:

Option D

Answer:

17. The correct answer option is A.

18. The correct answer option is D.

19. The correct answer option is D.

Step-by-step explanation:

17. [tex]\frac{m^2n^3}{p^3} \times \frac{mp}{n^2}[/tex]

Changing division to multiplication by taking reciprocal of the latter fraction to get:

[tex]\frac{m^2n^3}{p^3} \times \frac{n^2}{mp}[/tex]

[tex]\frac{mn^5}{p^4}[/tex]

The correct answer option is A. [tex]\frac{mn^5}{p^4}[/tex].

18. [tex]\frac{3xyz^2}{6y^4} \times \frac{2y}{xz^4}[/tex]

[tex]\frac{1}{y^2z^2}[/tex]

The correct answer option is D. [tex]\frac{1}{y^2z^2}[/tex].

19. [tex]\frac{r^2+7r+10}{3} \times \frac{3r-30}{r^2-5r-50}[/tex]

Factorizing the terms to get:

[tex]\frac{(r+2)(r+5)}{3} \times \frac{3(r-10)}{(r+5)(r-10)}[/tex]

Cancelling the like terms to get:

[tex]r+2[/tex]

The correct answer option is D. [tex]r+2[/tex].