Convert the Cartesian equation (x 2 + y 2)2 = 4(x 2 - y 2) to a polar equation.
Choices:

r4 = -4r2

r2 = 4cos2θ

r2 = 4sin2θ

Respuesta :

ANSWER

[tex]{r}^{2} = 4 \cos2\theta[/tex]

EXPLANATION

The Cartesian equation is

[tex] {( {x}^{2} + {y}^{2} )}^{2} = 4( {x}^{2} - {y}^{2} )[/tex]

We substitute

[tex]x = r \cos( \theta) [/tex]

[tex]y = r \sin( \theta) [/tex]

and

[tex] {x}^{2} + {y}^{2} = {r}^{2} [/tex]

This implies that

[tex] {( {r}^{2} )}^{2} = 4(( { r \cos\theta) }^{2} - {(r \sin\theta) }^{2} )[/tex]

Let us evaluate the exponents to get:

[tex] {r}^{4} = 4({ {r}^{2} \cos^{2}\theta } - {r}^{2} \sin^{2}\theta)[/tex]

Factor the RHS to get:

[tex] {r}^{4} = 4{r}^{2} ({ \cos^{2}\theta } - \sin^{2}\theta)[/tex]

Divide through by r²

[tex]{r}^{2} = 4 ({ \cos^{2}\theta } - \sin^{2}\theta)[/tex]

Apply the double angle identity

[tex]\cos^{2}\theta -\sin^{2}\theta= \cos(2 \theta) [/tex]

The polar equation then becomes:

[tex]{r}^{2} = 4 \cos2\theta[/tex]