Respuesta :

Reflection over the y-axis = change [tex]x\mapsto -x[/tex]

Compress by a factor of k = multiply by k

So, in your case, we first change the sign of the argument. Note that this has no effect, because f(x) is symmetric with respect to the y-axis:

[tex]|x|\mapsto |-x| = |x|[/tex]

Then, we compress the function, multiplying it by the scaling factor:

[tex]|x| \mapsto g(x)=\dfrac{|x|}{9}[/tex]

The reflection and the horizontal compressions are illustrations of transformations.

The formula for function g(x) is [tex]\mathbf{g(x) = 9x}[/tex]

The function is given as:

[tex]\mathbf{f(x) = |x|}[/tex]

The rule of reflection over the y-axis is:

[tex]\mathbf{(x,y) \to (-x,y)}[/tex]

So, we have:

[tex]\mathbf{f'(x) = |-x|}[/tex]

[tex]\mathbf{f'(x) = x}[/tex]

The rule of horizontal compression is:

[tex]\mathbf{(x,y) \to (\frac xb,y)}[/tex]

So, we have:

[tex]\mathbf{g(x) = \frac{x}{1/9}}[/tex]

[tex]\mathbf{g(x) = 9x}[/tex]

Hence, the formula for function g(x) is [tex]\mathbf{g(x) = 9x}[/tex]

Read more about transformations at:

https://brainly.com/question/11707700