Respuesta :

Answer:

Option C [tex]-7x-5y=-48[/tex]

Step-by-step explanation:

step 1

Find the slope of AB

we have

A(-3,-1) and B(4,4)

The slope m is equal to

[tex]m=(4+1)/(4+3)[/tex]

[tex]m=5/7[/tex]

step 2

Find the slope of BC

we know that

If two lines are perpendicular, then the product of their slopes is equal to -1

so

[tex]m1*m2=-1[/tex]

we have

[tex]m1=5/7[/tex]

substitute

[tex]5/7*m2=-1[/tex]

[tex]m2=-7/5[/tex]

step 3

Find the equation of the line into slope point form

[tex]y-y1=m(x-x1)[/tex]

we have

[tex]m=-7/5[/tex]

[tex]B(4,4)[/tex]

substitute

[tex]y-4=-(7/5)(x-4)[/tex]

Multiply by 5 both sides

[tex]5y-20=-7x+28[/tex]

[tex]7x+5y=28+20[/tex]

[tex]7x+5y=48[/tex]

Multiply by -1 both sides

[tex]-7x-5y=-48[/tex]