Suppose that 3% of all athletes are using the endurance-enhancing hormone EPO (you should be able to simply compute the percentage of all athletes that are not using EPO). For our purposes, a “positive” test result is one that indicates presence of EPO in an athlete’s bloodstream. The probability of a positive result, given the presence of EPO is .99. The probability of a negative result, when EPO is not present, is .90. What is the probability that a randomly selected athlete tests positive for EPO? 0.0297

Respuesta :

Answer:

Step-by-step explanation:

So there is a 3% probability that an athlete is using EPO .

The probability of showing positive on a test when you've used it is 0.99.

3% x 0.99= 2.97%

The probability of a positive result without EPO is 0.1

97% x 0,1 = 9,7 %

My guess is that 2.97% + 9,7% = 12.67% or 0.1267.

I don't know i may be wrong because you've put as an answer 0.0297 but if you like you may take only the first part of the answer.

There is a 0.1267 = 12.67% probability that a randomly selected athlete tests positive for EPO.

A positive test can happen in two cases:

  • When EPO is present(3% of the time), with 0.99 probability.
  • When EPO is not present(100 - 3 = 97% of the time), with 1 - 0.9 = 0.1 probability.

Then, adding these probabilities:

[tex]p = 0.03(0.99) + 0.97(0.1) = 0.1267[/tex]

0.1267 = 12.67% probability that a randomly selected athlete tests positive for EPO.

A similar problem is given at https://brainly.com/question/24161830