which expression is equivalent to the product of p+7/3 and 6/p , where p is not equal to 0?

a) 6p+7/3p
b) 3p+21/p
c) p+42/3p
d) 2p+14/p

Respuesta :

Answer:

[tex]\frac{(6p+14)}{p}[/tex]

Step-by-step explanation:

[tex](p+\frac{7}{3})(\frac{6}{p})[/tex]

Making denominator same in first bracket we get

[tex](\frac{3p+7}{3})(\frac{6}{p})[/tex]

[tex](\frac{(3p+7)*6}{3*p})[/tex]

Dividing 6 by 3 we get 2

[tex](\frac{(3p+7)*2}{p})[/tex]

using distributive law

[tex](\frac{6p+14}{p})\\[/tex]

Hence this is our answer

Answer:

Option d. 2p +  [tex]\frac{14}{p}[/tex]

Step-by-step explanation:

We have to find the expression equivalent to the product of ( P + [tex]\frac{7}{3}[/tex]) and (  [tex]\frac{6}{p}[/tex] ) where p ≠ 0

( p +  [tex]\frac{7}{3}[/tex] ) × (  [tex]\frac{6}{p}[/tex] )

= p (  [tex]\frac{6}{p}[/tex] ) + (  [tex]\frac{7}{3}[/tex] ) ( [tex]\frac{6}{p}[/tex] ) [distributive law]

= 6 + ( [tex]\frac{14}{p}[/tex] )

=  [tex]\frac{(6p+14)}{p}[/tex]

Therefore, option D is the answer.