Respuesta :
Answer:
[tex]\frac{(6p+14)}{p}[/tex]
Step-by-step explanation:
[tex](p+\frac{7}{3})(\frac{6}{p})[/tex]
Making denominator same in first bracket we get
[tex](\frac{3p+7}{3})(\frac{6}{p})[/tex]
[tex](\frac{(3p+7)*6}{3*p})[/tex]
Dividing 6 by 3 we get 2
[tex](\frac{(3p+7)*2}{p})[/tex]
using distributive law
[tex](\frac{6p+14}{p})\\[/tex]
Hence this is our answer
Answer:
Option d. 2p + [tex]\frac{14}{p}[/tex]
Step-by-step explanation:
We have to find the expression equivalent to the product of ( P + [tex]\frac{7}{3}[/tex]) and ( [tex]\frac{6}{p}[/tex] ) where p ≠ 0
( p + [tex]\frac{7}{3}[/tex] ) × ( [tex]\frac{6}{p}[/tex] )
= p ( [tex]\frac{6}{p}[/tex] ) + ( [tex]\frac{7}{3}[/tex] ) ( [tex]\frac{6}{p}[/tex] ) [distributive law]
= 6 + ( [tex]\frac{14}{p}[/tex] )
= [tex]\frac{(6p+14)}{p}[/tex]
Therefore, option D is the answer.