Respuesta :

Answer:

Step-by-step explanation:

r = 1+2sinФ

multiplying both sides by r ,we get

[tex]r^2= r+2rsin[/tex]Ф

[tex]x^2+y^2= r + 2y[/tex]    [ since rsinФ = y ]

[tex]x^2+y^2-2y= r[/tex]

[tex](x^2+y^2-2y)^2 = r^2\\x^4+y^4+4y^2+2x^2y^2-4y^3-4x^2y=x^2+y^2\\x^4+y^4+3y^2+2x^2y^2-4y^3-4x^2y-x^2 =0[/tex]

The equation equivalent to r = 1 + 2 is mathematically given as

(x^2+y^2-2y)^{2}=x^2+y^2

What is the equation equivalent to r = 1 + 2 sin in rectangular coordinates. ?

Question Parameter(s):

r = 1 + 2

Generally, the equation for the polar cordinates  is mathematically given as

[tex]x=rsin\theta\\\\y=rcos\theta[/tex]

Therefore

[tex](sin^{2}\theta + cos^{2}\theta) = 1[/tex]

Hence

[tex]r=\sqrt{x^2+y^2}[/tex]

In conclusion

[tex]\sqrt{x^2+y^2} = 1+2\frac{y}{\sqrt{x^2+y^2}}\\\\x^2+y^2-2y= \sqrt{x^2+y^2}[/tex]

(x^2+y^2-2y)^{2}=x^2+y^2

Read more about Equation

https://brainly.com/question/2263981