Answer:
x - 2y = 4 and 2x + y = -4
Step-by-step explanation:
Look at the picture.
Read the coordinates of intercepts of each line.
Put them to slope-intercept form of an equation of a line:
[tex]y=mx+b[/tex]
m - slope
b - y-intercept → (0, b)
The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
The blue line:
(4, 0), (0, -2) → b= -2
[tex]m=\dfrac{-2-0}{0-4}=\dfrac{-2}{-4}=\dfrac{2}{4}=\dfrac{2:2}{4:2}=\dfrac{1}{2}[/tex]
Substitute the values of a slope and an y-intercept to the equation of a line:
[tex]y=\dfrac{1}{2}x-2[/tex]
Convert to the standard form [tex]Ax+By=C[/tex]:
[tex]y=\dfrac{1}{2}x-2[/tex] multiply both sides by 2
[tex]2y=x-4[/tex] subtract x from both sides
[tex]-x+2y=-4[/tex] change the signs
[tex]x-2y=4[/tex]
The red line:
(-2, 0), (0, -4) → b= -4
[tex]m=\dfrac{-4-0}{0-(-2)}=\dfrac{-4}{2}=-2[/tex]
[tex]y=-2x-4[/tex] add 2x to both sides
[tex]2x+y=-4[/tex]