write the equation of the graph shown below in factored form

Answer:
[tex]f(x)=(x-3)^{2}(x-2)(x-1)[/tex]
Step-by-step explanation:
we know that
The roots (or x-intercepts) of the equation are
x=1 -----> with multiplicity 1
x=2 -----> with multiplicity 1
x=3 -----> with multiplicity 2 (because is a turning point)
so
The factors are
[tex](x-1), (x-2), (x-3),(x-3)[/tex]
The equation is equal to
[tex]f(x)=(x-3)(x-3)(x-2)(x-1)\\ \\f(x)=(x-3)^{2}(x-2)(x-1)[/tex]