Respuesta :
Answer:
x = -8 and y= 0 → (-8, 0)
Step-by-step explanation:
[tex]\left\{\begin{array}{ccc}y=\dfrac{1}{4}x+2&(1)\\3y=-\dfrac{3}{4}x-6&(2)\end{array}\right\\\\\text{Substitute (1) to (2):}\\\\3\left(\dfrac{1}{4}x+2\right)=-\dfrac{3}{4}x-6\qquad\text{use the distributive property}\\\\(3)\left(\dfrac{1}{4}x\right)+(3)(2)=-\dfrac{3}{4}x-6\\\\\dfrac{3}{4}x+6=-\dfrac{3}{4}x-6\qquad\text{subtract 6 from both sides}\\\\\dfrac{3}{4}x=-\dfrac{3}{4}x-12\qquad\text{add}\ \dfrac{3}{4}x\ \text{to both sides}\\\\\dfrac{6}{4}x=-12\qquad\text{multiply both sides by 4}\\\\6x=-48\qquad\text{divide both sides by 6}\\\\x=-8[/tex]
[tex]\text{Put the value of x to (1):}\\\\y=\dfrac{1}{4}(-8)+2\\\\y=-2+2\\\\y=0[/tex]
Answer:
infinity many solutions
is the answer I did the exam