Answer:
2.34 L
Explanation:
Assuming the pressure inside the balloon remains constant, then we can use Charle's law, which states that for a gas kept at constant pressure, the ratio between the volume of the gas and its temperature remainst constant:
[tex]\frac{V_1}{T_1}=\frac{V_2}{T_2}[/tex]
where in this problem we have:
[tex]V_1 = 2.50 L[/tex] is the initial volume
[tex]V_2 [/tex] is the final volume
[tex]T_1 = 30.0^{\circ}C+273 = 303 K[/tex] is the initial temperature
[tex]T_2 = 11.0^{\circ}C+273 = 284 K[/tex] is the final temperature
Substituting into the equation and solving for V2, we find the final volume:
[tex]V_2 = \frac{V_1 T_2}{T_1}=\frac{(2.50 L)(284 K)}{303 K}=2.34 L[/tex]