The values in the table represent an exponential function. What is the common ratio of the associated geometric sequence?

The values in the table represent an exponential function What is the common ratio of the associated geometric sequence class=

Respuesta :

gmany

Answer:

D. 3

Step-by-step explanation:

[tex]a_1,\ a_2,\ a_3,\ ...,\ a_n-\text{geometric series}\\\\r=\dfrac{a_2}{a_1}=\dfrac{a_3}{a_2}=\dfrac{a_4}{a_3}=...=\dfrac{a_n}{a_{n-1}}-\text{common ratio}\\\\\text{From the table we have:}\\\\a_1=7,\ a_2=21,\ a_3=63,\ a_4=189,\ a_5=567\\\\\text{Check the common ratio:}\\\\\dfrac{21}{7}=3\\\\\dfrac{63}{21}=3\\\\\dfrac{189}{63}=3\\\\\dfrac{567}{189}=3\\\\\bold{CORRECT}[/tex]