Respuesta :

Answer:

The limit of the function at x approaches to [tex]\frac{\pi}{2}[/tex] is [tex]-\infty[/tex].

Step-by-step explanation:

Consider the information:

[tex]\lim_{x \to \frac{\pi}{2}}\frac{cos(x)}{1-sin(x)}[/tex]

If we try to find the value at [tex]\frac{\pi}{2}[/tex] we will obtained a [tex]\frac{0}{0}[/tex] form. this means that L'Hôpital's rule applies.

To apply the rule, take the derivative of the numerator:

[tex]\frac{d}{dx}cos(x)=-sin(x)[/tex]

Now, take the derivative of the denominator:

[tex]\frac{d}{dx}1-sin(x)=-cos(x)[/tex]

Therefore,

[tex]\lim_{x \to \frac{\pi}{2}}\frac{-sin(x)}{-cos(x)}[/tex]

[tex]\lim_{x \to \frac{\pi}{2}}\frac{sin(x)}{cos(x)}[/tex]

[tex]\lim_{x \to \frac{\pi}{2}}tan(x)}[/tex]

Since, tangent function approaches -∞ as x approaches to [tex]\frac{\pi}{2}[/tex]

, therefore, the original expression does the same thing.

Hence, the limit of the function at x approaches to [tex]\frac{\pi}{2}[/tex] is [tex]-\infty[/tex].