Respuesta :

Answer: Last option.

Step-by-step explanation:

To find which expression in equivalent to the expression [tex]\frac{125^2}{125^\frac{4}{3} }[/tex], you need to remember  :

The Power of a power property:

[tex](a^m)^n=a^{(mn)}[/tex]

The Quotient of powers property:

[tex]\frac{a^m}{a^n} =a^{(m-n)}[/tex]

And the Product of powers property:

[tex](a^m)(a^n)=a^{(m+n)}[/tex]

Knowing that:

 [tex]125=5*5*5=5^3[/tex]

Then, you get:

[tex]\frac{125^2}{125^\frac{4}{3} }=\frac{(5^3)^2}{(5^3)^\frac{4}{3} }=\frac{5^6}{5^4}=5^{(6-4)}=5^2=25[/tex]