select the quadratic function with a graph that has the following features

x-intercept at (8,0)
y-intercept at (0,-32)
maximum value at (6,4)
axis of symmetry at x=6

A. f() = 1/2 x2 +6 - 32
B.f() = -x2 + 12x -32
C.f() = 1/2 x2 + 6x -16
D f() = -x2 + 12x -6​

Respuesta :

Answer:

Option B [tex]f(x)=-x^{2}+12x-32[/tex]

Step-by-step explanation:

we know that

For the given values, the quadratic function is a vertical parabola open downward (vertex is a maximum)

The equation in vertex form is equal to

[tex]f(x)=a(x-h)^{2} +k[/tex]

where

(h,k) is the vertex

a is a coefficient

we have

(h,k)=(6,4)

so

[tex]f(x)=a(x-6)^{2} +4[/tex]

Find the value of a

For x=8, y=0 -----> the y-intercept

substitute

[tex]0=a(8-6)^{2} +4[/tex]

[tex]0=a(2)^{2} +4[/tex]

[tex]0=4a +4[/tex]

[tex]a=-1[/tex]

substitute

[tex]f(x)=-(x-6)^{2} +4[/tex]

Convert to standard form

[tex]f(x)=-(x^{2}-12x+36) +4[/tex]

[tex]f(x)=-x^{2}+12x-36+4[/tex]

[tex]f(x)=-x^{2}+12x-32[/tex]

The graph in the attached figure

Ver imagen calculista

Answer:

B

Step-by-step explanation: