Respuesta :

lucic

Answer:

C.

Step-by-step explanation:

This can be written as

[tex]log_w\frac{(x^2-6)^4}{(x^2+8)^\frac{1}{3} }[/tex]

when you divide log you should subtract the terms

[tex]log_w(x^2-6)^4-log_w(x^2+8)^\frac{1}{3}[/tex]

Rewrite powers in the terms as below

[tex]4log_w(x^2-6)-\frac{1}{3} log_w(x^2+8)[/tex]

Answer:

C. [tex]4\cdot log_w(x^2-6)-\frac{1}{3}\cdot log_w((x^2+8)[/tex]

Step-by-step explanation:

We have been given an expression [tex]log_w\frac{(x^2-6)^4}{\sqrt[3]{x^2+8}}[/tex]. We are asked to choose the equivalent expression to our given expression.  

Upon applying log rule [tex]log_c(\frac{a}{b})=log_c(a)-log_c(b)[/tex], we will get:

[tex]log_w(x^2-6)^4-log_w(\sqrt[3]{x^2+8})[/tex]

Using exponent rule [tex]\sqrt[n]{x}=x^{\frac{1}{n}}[/tex], we will get:

[tex]log_w(x^2-6)^4-log_w((x^2+8)^{\frac{1}{3}}[/tex]

Now, we will apply rule [tex]log_c(a^b)=b\cdot log_c(a)[/tex] to simplify our expression as:

[tex]4\cdot log_w(x^2-6)-\frac{1}{3}\cdot log_w((x^2+8)[/tex]

Therefore, option C is the correct choice.