contestada

The measure of central angle XYZ is 3pi/4 radians. What is the area of the shaded sector?
32pi units2
85 ..
96 ..
256 ..

The measure of central angle XYZ is 3pi4 radians What is the area of the shaded sector 32pi units2 85 96 256 class=

Respuesta :

Answer:

96π units²

Step-by-step explanation:

area of shaded sector (A) = area of circle × fraction of circle

A = πr² × [tex]\frac{\frac{3\pi }{4} }{2\pi }[/tex]

   = 16² × [tex]\frac{3\pi }{8}[/tex]

   = 256 × [tex]\frac{3\pi }{8}[/tex]

   = 32 × 3π

   = 96π units²

Answer:

Area of sector : 96 π unit².

Step-by-step explanation:

Given : The measure of central angle XYZ is 3pi/4 radians.

To find : What is the area of the shaded sector?

Solution: We have given central angle XYZ is 3pi/4 radians.

Area of sector : [tex]\frac{1}{2}[/tex] (radius)²* central angle.

Plug the values central angle  = [tex]\frac{3\pi }{4}[/tex] , radius = 16 units.

Then ,

Area of sector : [tex]\frac{1}{2}[/tex] (16)²* [tex]\frac{3\pi }{4}[/tex].

Area of sector : [tex]\frac{1}{2}[/tex] * 256 * [tex]\frac{3\pi }{4}[/tex].

Area of sector :  128 * [tex]\frac{3\pi }{4}[/tex].

Area of sector : 32 * 3 π

Area of sector : 96 π unit².

Therefore, Area of sector : 96 π unit².