I'll abbreviate the definite integral with the notation,
[tex]I(f(x),a,b)=\int_a^bf(x)\,\mathrm dx[/tex]
We're given
Recall that the definite integral is additive on the interval [tex][a,b][/tex], meaning for some [tex]c\in[a,b][/tex] we have
[tex]I(f,a,b)=I(f,a,c)+I(f,c,b)[/tex]
The definite integral is also linear in the sense that
[tex]I(kf+\ell g,a,b)=kIf(a,b)+\ell I(g,a,b)[/tex]
for some constant scalars [tex]k,\ell[/tex].
Also, if [tex]a\ge b[/tex], then
[tex]I(f,a,b)=-I(f,b,a)[/tex]
a. [tex]I(2f,1,5)=2I(f,1,5)=2(I(f,1,8)-I(f,5,8))=2(9-4)=\boxed{10}[/tex]
b. [tex]I(f-g,1,8)=I(f,1,8)-I(g,1,8)=9-5=\boxed{4}[/tex]
c. [tex]I(f-g,1,5)=I(f,1,5)-I(g,1,5)=\dfrac{I(2f,1,5)}2-I(g,1,5)=10-3=\boxed{7}[/tex]
d. [tex]I(g-f,5,8)=I(g,5,8)-I(f,5,8)=(I(g,1,8)-I(g,1,5))-I(f,5,8)=(5-3)-4=\boxed{-2}[/tex]
e. [tex]I(7g,5,8)=7I(g,5,8)=7(5-3)=\boxed{14}[/tex]
f. [tex]I(3f,5,1)=3I(f,5,1)=-3I(f,1,5)=-\dfrac32I(2f,1,5)=-\dfrac32(10)=\boxed{-15}[/tex]