Respuesta :

Answer:

arranged

Step-by-step explanation:

1. cos(2x+x)

2. cos2xcos-sin2xsinx

3. 1-2sin^2x(cosx) -(2sinxcosx)sinx

4. cosx - 2sin^2xcosx - 2sin^2xcosx

5. cosx - 4sin^2xcosx

6. cosx( 1 - 4sin^2x)

7. cosx{1-4(1-cos^2x)}

8. cosx{-3+4cos^2x)

9. 4cos^3x-3cosx !

Answer:

The arranged steps are shown below.

Step-by-step explanation:

The given expression is

[tex]\cos 3x[/tex]

We need to express the given expression in terms of cos x.

The arranged steps are shown below:

[tex]\cos (2x+x)[/tex]

[tex]\cos (2x)\cos (x)-\sin (2x)\sin (x)[/tex]

[tex][1-2\sin^2 (x)]\cos (x)-[2\sin (x)\cos (x)]\sin (x)[/tex]         [tex][\because \cos (2x)=1-2\sin^2 (x),\sin (2x)=2\sin (x)\cos (x)][/tex]

[tex]\cos (x)-2\sin^2 (x)\cos (x)-2\sin^2 (x)\cos (x)[/tex]

[tex]\cos (x)-4\sin^2 (x)\cos (x)[/tex]

[tex]\cos (x)[1-4\sin^2 (x)][/tex]

[tex]\cos (x)\{1-4[1-\cos^2 (x)]\}[/tex]        [tex][\because \sin^2 (x)=1-\cos^2 (x)][/tex]

[tex]\cos (x)[-3+4\cos^2 (x)][/tex]

[tex]4\cos^3 (x)-3\cos (x)[/tex]