Answer:[tex]a_{t}=3.96[/tex]
[tex]a_{c}=0.8712[/tex]
Explanation:
Given
[tex]\theta =0.220e^{3t}[/tex]
r=2cm
Now angular velocity is given by [tex]\omega =\frac{\mathrm{d}\theta}{\mathrm{d}t}[/tex]
[tex]\omega =0.66e^{3t}[/tex]
Now linear velocity(v) is given =[tex]\omega r[/tex]
[tex]v=1.32e^{3t}[/tex]
Now tangential component of acceleration is given by
[tex]a_{t}=\frac{\mathrm{d}\vec{v}}{\mathrm{d}t}=3.96e^{3t}[/tex]
at t=0
[tex]a_{t}=3.96cm/s^2[/tex]
radial component of acceleration is given by
[tex]a_{c}=\omega ^{2}r[/tex]
[tex]a_{c}=0.4356e^{6t}\times 2[/tex]
[tex]a_{c}=0.8712e^{6t} cm/s^{2}[/tex]
at t=0
[tex]a_c=0.8712 cm/s^{2}[/tex]